-->
打开APP

mBio:青霉耐药机制研究中取得进展

高耐药的发生是由于插入序列IS26介导的包括blaKPC-2基因在内的多重耐药(MDR)区动态且不稳定的扩增导致的,这种机制可帮助细菌来逃避碳青霉烯类抗生素的攻击。

2022-04-05

Plant Physiology:产油海洋微拟球藻中发现一种汇的新分子

该课题组以海洋微拟球藻为对象,揭示了PDAT在调控脂质代谢、汇集细胞内碳流方面的重要作用,并发现在胁迫条件下细胞合成一种用于替代TAG的新的碳储存分子——低不饱和酰基磷脂酰乙醇胺。

2022-05-19

Green Chemistry:实现非发酵碳源高值香料瓦伦西亚细胞工厂构建

萜类化合物是一类基于异戊二烯单元(C5H8)的天然化合物,种类繁多且具有多种生物活性,被广泛应用于医药、化工、食品、化妆品等领域。

2022-06-13

PNAS:利用石墨/聚合物基体促进撕裂的肩袖肌肉再生

在一项新的研究中,来自美国康涅狄格大学的研究人员发现一种再生肌肉的新方法可能有助于修复每年数百万人的受损肩部。该技术使用先进的材料来鼓励肩袖肌肉的生长。

2022-08-18

纳米材料促进玉米生长机制研究方面取得进展

近日,河南农业大学生命科学学院资源植物种质与分子生理、功能基因组学团队与植物保护学院植物病害生态防控科技创新团队合作在解析碳纳米材料促进玉米生长机制研究方面取得重要进展。目前,碳纳米酶作为新一代人工模拟酶在农业领域的应用研究仍处于萌芽期。该研究发现自主合成的阳离子型富勒烯水溶性衍生物(IFQA)作为新型碳纳米酶,具有体外抗氧化活性,可显着促进氧化胁迫下玉米和

2022-02-03

首个口服青霉抗生素!tebipenem HBr申请上市:治疗复杂尿路感染(cUTI),疗效媲美静脉厄他培南!

如果获批,tebipenem HBr将成为唯一一款可用于治疗cUTI的口服碳青霉烯类抗生素,将改变临床实践。

2021-10-29

解脂耶氏酵母一代谢研究取得进展

利用甲基营养型工业微生物,可从一碳原料生产多种产品。天然甲基营养型微生物能够同化甲醇积累菌体,并有效合成乙酸等少数产物,而由于缺少遗传改造工具、细胞代谢网络不清晰,人们难以拓展其有限的产物谱,限制了此类微生物的广泛应用。近年来,改造工业微生物以同化甲醇,进行甲醇高效生物转化,成为研究重点。解脂耶氏酵母是一种重要的非常规酵母底盘,经遗传改造,能够转化多种碳源底

2022-01-10

Global Change Biology:揭示氮富集提高土壤微生物利用效率的新机制

工业革命以来,化石燃料燃烧和农业化肥使用等人类活动导致大气氮沉降增加。持续的氮输入会显著改变陆地生态系统结构和功能。

2022-06-14

全球变化下土壤有机和微生物多样性关系方面取得进展

土壤微生物是陆地生态系统遗传多样性的重要组成部分,在陆地生态系统地下碳(C)循环中发挥重要作用。

2022-08-11

Cell巧用“核爆”验证

我们已经找到大量关于人类海马体存在神经发生的积极证据。如果认为单核RNA测序是‘唯一的绝对真理’,那将是一种科学误解。

2022-05-07